
Query Language 

In JPA, separate query language is provided to enable inquiries on certain object and independent 

query definition on DB types based on instantiation aspect. The elements and creating method is as 
following. 

 

Elements 

The QL statements are two types: SELECT statement, and UPDATE and DELETE statement. 

 

• SELECT statement: SELECT option + FROM option + WHERE option + ORDER BY option + 

GROUP BY option  

• UPDATE&DELETE statement: UPDATE/DELETE option + WHERE option 

Let’s examine each option in the following.  

SELECT Option 

Defined to indicate inquiry data in detail.  

SELECT [object or property], Aggregate Functions, etc. 

If inquiring several cases of data, result value can be defined as List, Map or user-defined Type. 

(Default = Object[])  

SELECT new List (prop1, prop2, …) 

Possible Aggregate Functions  

COUNT: Return to Long  

MAX, MIN: Return to a defined field 

AVG: Return to Double 

SUM: Long in case of integral type; Double in case of float type; BigInteger in case of BigInteger; 

BigDecimal in case of BigDecimal 

Main Functions used in QL  

String Functions 

Function  Description 

CONCAT(str1, str2)  Connect two strings 

SUBSTRING(str, idx, 

length)  
Calculate strings of length size in designated idx location 

TRIM([type] str)  

Delete leading and trailing blanks (When the type is BOTH, delete leading and 

trailing blanks, when the type is leading, delete the leading blank, and when the 

type is trailing, delete the trailing blank) 

LOWER(str)  Convert to lower case 

UPPER(str)  Convert to upper case 

LENGTH(str)  Locate total length 

LOCATE(str, s, idx)  Locate ‘s’ defined in related str. The starting location is idx. 

Arithmetic Functions 

Function Description 



ABS(num)  Calculate the absolute number. 

SQRT(num)  Calculate square root of the number. 

MOD(num1,num2)  Calculate the remaining value from dividing num1 by num 2 

SIZE(collection value) Calculate the entry number included in the collection 

DateTime Functions 

Function Description 

CURRENT_DATE  Calculate current data 

CURRENT_TIME  Calculate current time 

CURRENT_TIMESTAMP Calculate current date and time 

FROM Option 

Defines inquiring object, when SELECT option is omitted, the object defined in the FROM option 
becomes the subject to be transmitted. 

FROM [object] ((AS) alias), … 

JOINS 

JOIN can be used in FROM statement. Following is the type of JOIN.  

JOIN 

Type  
Example Description  

Inner 

Joins  

SELECT c FROM Customer c 

JOIN c.orders o WHERE 

c.status = 1  

Extracts the case where both for comparison exists (extract 

the customers with orders only) 

Left 

Outer 

Joins  

SELECT c FROM Customer c 

LEFT JOIN c.orders o WHERE 

c.status = 1 

Extracts even if it exists only in one part(the customer 

without Order also extracts)  

Fetch 

Joins  

SELECT d FROM Department d 

LEFT JOIN FETCH d.employees 

WHERE d.deptno = 1  

Child list following FETCH statement is extracted together 

(extract employee list that has attribute of Department, in 

case of lazy loading, employee information is not extracted if 

not fetched.)  

WHERE Option 

Defined to make more detailed classification on the result of inquiry. 

WHERE [condition], … 

There are several expressions that indicate the conditions. Following are the main examples. 

Conditions  Description  Example  

Path Expressions  Indicate attribute of entity class user.roles  

Named Parameters 
Indicate the parameter indicating the name. The 

value can be designated through setParameter  

WHERE department.deptName 

like:condition  

Positional 

Parameters  

Can designate the parameter indicating the 

location and designate the value through 

setParameter. 

WHERE role.roleName = ?1  

Collection Member 

Expressions  

Process Collection type Attribute as condition in 

the expression of ”[NOT] MEMBER [OF]”.  
user MEMBER OF role.users  

Besides, expressions such as IN , LIKE , IS NULL , EXISTS , Function are supported.   



ORDER BY Option 

Defines how to order results.  

ORDER BY [condition] (ASC or DESC), … 

GROUP BY Option 

Defines grouping of results  

GROUP BY [condition], … 

[HAVING] [condition] 

Basic methods 

Representative method of use will be explained based on the example sources. Basic CRUD and JOIN 
method is as following. 

Example 

Inquiry can be executed on one table through QL 

Sample Source 

   StringBuffer qlBuf = new StringBuffer(); 

   qlBuf.append("FROM Department department "); 

   qlBuf.append("WHERE department.deptName like:condition "); 

   qlBuf.append("ORDER BY department.deptName"); 

  

   Query qlQuery = em.createQuery(qlBuf.toString()); 

   qlQuery.setParameter("condition", "%%"); 

  

   List departmentList = qlQuery.getResultList(); 

List of Department object matching the search conditions are returned through QL statement defined 

as above. Search condition of WHERE option can be defined in the object name. Attribute 

name(department.deptName) and search condition can be completed through Named Paramenter 
using ':'. Value of inquiry condition is designated through setParameter() method of Query.  

List Inquiry through JOIN 

Execute INNER JOIN and LEFT OUTER JOIN. The example is as following. 

INNER JOIN (1) 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("SELECT user "); 

   qlBuf.append("FROM User user join user.roles role "); 

   qlBuf.append("WHERE role.roleName = ?1"); 

  

   Query query = em.createQuery(qlBuf.toString()); 

   query.setParameter(1, "Admin"); 

  

   List userList = query.getResultList(); 

Through QL statement defined as above, List of Department object matching the inquiry condition is 

returned. It was processed INNER JOIN using JOIN in FROM option and the inquiry condition of WHERE 

option can be defined as object name. Attribute name (department.deptName). Inquiry condition can 



be completed using '?!' through Positional Paramenter. Value of search condition is designated through 
setParameter() method of Query. 

INNER JOIN (2) 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("SELECT distinct user "); 

   qlBuf.append("FROM User user, Department department "); 

   qlBuf.append("WHERE user.department.deptId = department.deptId "); 

   qlBuf.append("AND department.deptId =:condition1 "); 

   qlBuf.append("AND user.userName like:condition2 "); 

  

   Query query = em.createQuery(qlBuf.toString()); 

   query.setParameter("condition1", "Dept1"); 

   query.setParameter("condition2", "%%"); 

  

   List userList = query.getResultList(); 

Through QL statement defined as above, List of Department object matching the inquiry condition is 

returned. Through WHERE option, it was processed INNER JOIN through '=' and the inquiry condition 

can be defined as object name. Attribute name(department.deptName) using '?!' and completed 

through Positional Paramenter. Value of inquiry condition is designated through set Parameter() 

method of Query.  

LEFT OUTER JOIN 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("SELECT distinct role "); 

   qlBuf.append("FROM Role role left outer join role.users user "); 

   qlBuf.append("ORDER BY role.roleName ASC "); 

  

   Query query = em.createQuery(qlBuf.toString()); 

  

   List roleList = query.getResultList(); 

Through QL statement defined as above, the List of role object matching condition is returned. FROM 

option에서 LEFT OUTER JOIN processing was performed in FROM option. Since it is LEFT OUTER JOIN, 
it is extracted even if information in RIGHT is extracted. In above example, ROLE information without 

USER information is all listed.  

Defined Return Type 

After inquiry, the result can be transmitted as desired object type.It can be used to return as 

composite class rather than Persistence class mapped to one table if joining several tables.   

Invoking as Certain Object Formats 

 

It receives inquiry results as a certain object (user object format in the example) using QL (INNER 

JOIN) in two related tables. 

 

StringBuffer qlBuf = new StringBuffer(); 

   qlBuf.append("SELECT new User(user.userId as userId, "); 

   qlBuf.append(" user.userName as userName, user.password as password, "); 

   qlBuf.append(" role.roleName as roleName, "); 

   qlBuf.append(" user.department.deptName as deptName) "); 

   qlBuf.append("FROM User user join user.roles role "); 

   qlBuf.append("WHERE role.roleName =:condition"); 

  

   Query query = em.createQuery(qlBuf.toString()); 



   query.setParameter("condition", "Admin"); 

  

   List userList = query.getResultList(); 

What should be noted that the creator is called through new User(…) and this creator should be defined 

in User class. In addition, to get out the value corresponding to each attribute in returned value, get 
out each user object from list and use the getter method.  

   User user1 = (User) userList.get(0); 

   user1.getUserName()); 

   User user2 = (User) userList.get(1); 

   user2.getUserName()); 

Invoking as Map Formats 

It receives inquiry results as a map format using QL (INNER JOIN) in two related tables. 

 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("SELECT new Map(user.userId as userId, "); 

   qlBuf.append(" user.userName as userName, user.password as password, "); 

   qlBuf.append(" role.roleName as roleName, "); 

   qlBuf.append(" user.department.deptName as deptName) "); 

   qlBuf.append("FROM User user join user.roles role "); 

   qlBuf.append("WHERE role.roleName =:condition"); 

  

   Query query = em.createQuery(qlBuf.toString()); 

   query.setParameter("condition", "Admin"); 

  

   List userList = query.getResultList(); 

If defining as above, the inquiry result becomes the form of Map List. At this time, userId, userName, 

password, roleName, deptName defined as alias become the key value of map. Accordingly, result 
value can be inquired through key value defined as Map as shown below.  

   List userList = query.getResultList(); 

  

   Map user1 = (Map) userList.get(0); 

   user1.get("userId"); 

   user1.get("userName"); 

   ... 

Invoking as List Format 

It receives inquiry results as a list format using QL (INNER JOIN) in two related tables. 

 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("SELECT new List(user.userId as userId, "); 

   qlBuf.append(" user.userName as userName, user.password as password, "); 

   qlBuf.append(" role.roleName as roleName, "); 

   qlBuf.append(" user.department.deptName as deptName) "); 

   qlBuf.append("FROM User user join user.roles role "); 

   qlBuf.append("WHERE role.roleName =:condition"); 

  

   Query query = em.createQuery(qlBuf.toString()); 

   query.setParameter("condition", "Admin"); 

  

   List userList = query.getResultList(); 



If defining as above, inquiry result becomes the form of list of list. Follow the order defined to get out 

the result value from the List.   

   List userList = query.getResultList(); 

  

   List user1 = (List) userList.get(0); 

   user1.get(1); //userId 

   user1.get(2); //userName 

   ... 

Named Query 

The execution can be enabled by inserting name on the QL statement defined as annotation within the 

entity class file. 

Sample Source 

   Query qlQuery = em.createNamedQuery("findDeptList"); 

   qlQuery.setParameter("condition", "%%"); 

  

   List deptList = qlQuery.getResultList(); 

If transferring the query name to createNamedQuery() method as above, execute by finding QL 

statement matching this name. Following is the part of Department Entity class source containing 
findDeptList.  

Entity Source 

@Entity 

@NamedQuery(name = "findDeptList",  

           query = "FROM Department department WHERE department.deptName like:condition 

ORDER BY department.deptName") 

public class Department implements Serializable { 

... 

} 

Processing Paging  

Processing paging limits the inquiry list shown in one page to reduce DB or application memory 

overload. Let’s examine the method to obtain the inquiry results processed paging when executing QL. 

Execute the inquiry tasks using QL on the specific table(USER table in the example). At this time, by 

defining the number(MaxResult) of inquiry list and inquiry list of Number(FirstResult) of Row to start 

inquiry, paging processing becomes possible.  

Sample Source 

   StringBuffer qlBuf = new StringBuffer(); 

  

   qlBuf.append("FROM User user "); 

   Query query = em.createQuery(qlBuf.toString()); 

   //Number of item to inquire first 

   query.setFirstResult(1); 

   //Total number of inquiry items 

   query.setMaxResults(2); 

  

   List userList = query.getResultList(); 

If defining as above, QL create SQL matching each DB according to hibernate.dialect properties defined 

in persistence.xml file, It is not to deliver the number of data that belongs to page after reading all 
data at the time of Pagination, but read the data as many as the number that belongs to relevant page.   



CUD using QL 

In CUD (create, update, delete) using JPA, it generally uses basic API (Refer to Basic CRUD in this 
manual). However, in specific cases, basic CUD should occur through QL in specific cases.  

INSERT 

Next is an example of using INSERT statement using QL. 

   StringBuffer ql = new StringBuffer(); 

  

   ql.append("INSERT INTO Department (deptId,deptName) "); 

   ql.append("SELECT CONCAT(deptId,'UPD'), CONCAT(deptName,'UPD') "); 

   ql.append("FROM Department department "); 

   ql.append("WHERE deptId =:deptId"); 

  

   Query query = em.createQuery(ql.toString()); 

   query.setParameter("deptId", "Dept1"); 

  

   query.executeUpdate(); 

If created as above, register new Department information using QL.  

UPDATE 

Next is an example of using UPDATE statement using QL. 

   StringBuffer ql = new StringBuffer(); 

  

   ql.append("UPDATE Department department "); 

   ql.append("SET department.desc =:desc "); 

   ql.append("WHERE department.deptId =:deptId and department.deptName =:deptName "); 

  

   Query query = em.createQuery(ql.toString()); 

   query.setParameter("desc", "Human Resource"); 

   query.setParameter("deptId", "Dept1"); 

   query.setParameter("deptName", "HRD"); 

  

   query.executeUpdate(); 

Above example updates the Department information using QL and factor value is set through 

setParameter() method of Query.  

DELETE 

Next is an example of using DELETE statement using QL. 

   StringBuffer ql = new StringBuffer(); 

   ql.append("DELETE Department department "); 

   ql.append("WHERE department.deptId =:deptId "); 

  

   Query query = em.createQuery(ql.toString()); 

   query.setParameter("deptId", "Dept1"); 

  

   query.executeUpdate(); 

Above example deletes the Department information using QL and sets the factor value through 

setParameter() method of Query.   

 


